Прокофьев Б.В. АО «НПП «Торий»

Выбор диэлектрических материалов для применения в выводах энергии мощных ЭВП СВЧ

Представлен анализ интегральных характеристик диэлектрических материалов, применяемых в выводах энергии ЭВП СВЧ, и даны рекомендации по использованию этих материалов в зависимости от передаваемого уровня мощности СВЧ и рабочего диапазона частот.

Ключевые слова: окна вывода энергии, диэлектрические материалы, мощные электровакуумные приборы СВЧ.

Для вывода СВЧ энергии из электровакуумных приборов используют волноводные и коаксиальные окна, основным элементом которых является вакуумноплотная диэлектрическая перегородка, способная пропускать электромагнитные волны. В качестве материалов перегородки чаще всего используют оксиды алюминия или бериллия, нитрид алюминия, пиролитический нитрид бора, поликристаллический алмаз. Обилие параметров, характеризующих каждый материал (см. таблицу 1), приводит к тому, что разработчики мощных и сверхмощных приборов СВЧ, как правило, отдают предпочтение тому или иному материалу, руководствуясь его ценой, доступностью, а также какими-либо отдельными свойствами, которые им кажутся наиболее важными. В качестве таких свойств, определяющих выбор материала, обычно оказываются теплопроводность диэлектрика и тангенс угла потерь. Однако относительная роль тех или иных характеристик материала может быть выяснена только при учете реальных угроз надежности окна и всей совокупности параметров диэлектрика, определяющих конкретный вид разрушения.

Разрушение современных диэлектрических материалов, применяемых в устройствах вывода энергии мощных и сверхмощных приборов СВЧ, происходит, главным образом, по одной из следующих причин:

- термомеханическое разрушение (TMP) вследствие неравномерного нагрева вакуумноплотной перегородки из-за диэлектрических потерь;
- вторично-электронный СВЧ разряд (ВЭР) на обращенной в вакуум поверхности перегородки;
- СВЧ пробой и вызванный им дуговой разряд в невакуумной части окна вывода энергии.

Реже встречаются разрушения, обусловленные отчасти связанными между собой СВЧ разрядом в порах керамики и т.н. «проколами» диэлектрика в выводах энергии сверхмощных приборов импульсного режима. Эти проблемы могут быть решены применением технологии горячего изостатического прессования керамики [1]. В России подобная керамика пока не производится, но во многих случаях ее можно заменить другими беспористыми материалами, например, лейкосапфиром или пиролитическим нитридом бора.

В выводах энергии мощных и сверхмощных приборов СВЧ почти всегда применяются окна с жидкостным охлаждением краев диэлектрической перегородки. Для такого охлаждения формулы, которые описывают предельную пропускную способность плоско-

Таблица 1 Свойства диэлектриков, применяемых в выводах энергии

Материал	ВК94-1	ВК98-1	ВК99-1	Лейко-	Нитрид	ВБ100	CVD	CVD.
_	(22XC)	(сапфирит)	(поликор)	сапфир	алюминия	(оксид	нитрид	алмаз
						бериллия)	бора	
Содержание	94,2%	98%	99,8 %	100%	96,5%	99,5%	100%	100 %
основного компонента	Al ₂ O ₃	AlN	BeO	BN	С			
$\Sigma_{ m P}$, кгс/см 2	1800	2650	2500	4000	-	1000	540	2500
$\Sigma_{\rm cw}$,KGC/CM ²	11000	30000	-	20000	21500	13350	⊥2400	-
$E_{y} \times 10^{-6}$,	3,1	3,8	3,8	3÷4	3,2	3,1	0,15 	10
кгс/см ²	14	25	29,3	34,2	170	210	11 55	700÷
Λ ,B _T / _M ×°K (20°C)	14	23	29,3	34,2	170	210	∥ 55 ⊥ _{1,5}	1900-
$\alpha \times 10^7$, 1/°C	68	70	70	∥77 ⊥ ₆₆	36	72	^{∥26} ⊥ ₂₂₃	23
ε (20°C)	9,4	9,7	9,9	∥11,6 ⊥9,4	8,35	6,7	4,65 _13,8	5,7
$tg\delta \times 10^4$	8	1	0,5	1,3	25÷50	5	0,5÷3	0,1÷0,5
(20°C)				$\perp_{3,3}$				
U_{np} , к B /мм	30÷45	32-47	-	-	20÷25	-	⊥60	-
КВЭЭ σ _{макс}	5,8	8,05	-	-	1,9	4,55	2,5	2,8
V_{1KP} , B	50	40	-	-	90	70	⊥90	-
Токсичность	_	-	_	_	_	+	ı	-
Завис. свойств от температуры	сильная	сильная	сильная	сильная	очень силь- ная	очень силь- ная	слабая	сильная
Стоимость	умеренная	умеренная	умеренная	высокая	умеренная	умеренная	высокая	очень высокая

поперечных диэлектрических перегородок, связанную с неравномерным нагревом из-за диэлектрических потерь, в общем случае имеют следующий вид [2]:

$$P_{\text{npTMP}} = A_1 \times \frac{K}{f},\tag{1}$$

где A_1 — постоянный (с точностью до дисперсионного множителя) коэффициент, определяемый конструкцией и размерами окна, f — частота; $K = \Sigma_p \Lambda / (\alpha E_y \epsilon \cdot tg \delta) \ [B_T / M] - коэф$ фициент качества диэлектрика, в котором $\Sigma_{\rm p}$ – прочность материала на растяжение, Λ – коэффициент теплопроводности, α – коэффициент линейного расширения, E_v – модуль упругости, ϵ – диэлектрическая проницаемость, δ – угол потерь.

Таблина 2

Значения коэффициента качества диэлектриков

2 TT									
Материал	22XC	Сапфи-	Поликор	Лейкосап-	BeO	AlN	CVD BN	CVD-	
		рит		фир				алмаз	
K·10-5	1÷2	15÷25	30÷40	50÷70	30÷40	5÷15	500÷700*	≈10000	
Вт/м									

^{*}Величина коэффициента качества нитрида бора ограничена его максимальной рабочей температурой, принятой равной температуре окисления на воздухе (около 1100 °C).

Значения коэффициента качества приведены в таблице 2, из которой следует, что наименьшим коэффициентом качества обладает керамика 22XC, а наибольшим – пиролитический нитрид бора («борнилит») и поликристаллический алмаз.

Пороговая мощность вторично-электронного СВЧ-разряда для плоскопоперечной диэлектрической перегородки в общем случае определяется формулами вида [3]:

$$P_{\text{mpB}} = A_2 C^2 f^2 S, \tag{2}$$

где A_2 – постоянный (с точностью до дисперсионного множителя) коэффициент, определяемый конструкцией окна; S – площадь поперечного сечения волновода; C – постоянная, определяемая формой кривой коэффициента вторичной электронной эмиссии диэлектрика (см. таблицу 3).

Таблица 3 Рассчитанные значения коэффициента С для некоторых диэлектриков [3]

Материал	22XC	Сапфи-	Поли-	Лейко-	BeO	AlN	CVD	CVD-
		рит	кор	сапфир			BN	алмаз
C·10 ⁷ , B·c/M	230	190		_	260	_	350	_

Среди рассмотренных в таблице материалов наибольшей устойчивостью к вторичноэлектронному разряду характеризуется пиролитический нитрид бора, хотя, судя по величине коэффициента вторичной эмиссии, не менее привлекательно может выглядеть нитрид алюминия. Относительно низкий коэффициент вторичной эмиссии имеет также и CVD-алмаз.

При нормальных условиях пороговая мощность СВЧ-пробоя в воздухе до частот, меньших f≈30 ГГц, когда можно пренебречь частотой столкновений электронов с молекулами газа по сравнению с рабочей частотой f, пропорциональна сечению S волновода:

$$P_{np\Pi B} = A_3 S, \qquad (3)$$

где, как и раньше, A_3 – постоянный, с точностью до дисперсионного множителя, коэффициент, определяемый конструкцией окна. При этом устойчивость материалов к кратковременному локальному поверхностному нагреву, вызванному пробоем и образованием дуги, определяется температурами, приведенными в таблице 4.

Таблица 4 Устойчивость лиэпектриков к внезапному покальному нагреву

5 CION INDUCTO ANSIGNI PHROB R BICSAIIIOMY SIGNASIBIIOMY HAI PCBY									
Материал	22XC	Сапфи-	Лейкосап-			CVD	CVD-		
		рит	фир	BeO	AlN	BN	алмаз		
$\Sigma_{cw} / \alpha E_y$,°C	520	1100	≈850	1800	600	≈6200	≈1700*		

*Ввиду отсутствия для CVD-алмаза данных по пределу разрушения при сжатии величина $\Sigma_{\rm cж}$ была принята на порядок большей порога прочности на растяжение $\Sigma_{\rm p}$ - соотношение, которое приблизительно выполняется для различных материалов.

Как следует из таблицы, пиронитрид бора, расчетная температура разрушения которого превышает его температуру плавления, не должен поддаваться растрескиванию, что подтверждается и опытом работы с этим материалом. Ввиду своей слоистой структуры и крайне малой теплопроводности в направлении, перпендикулярном слоям, перегородка из нитрида бора относительно медленно прогорает под действием электрической дуги (рис. 1). Остальные материалы, включая CVD-алмаз, уязвимы в отношении локальных термоударов, трескаются при пробоях по поверхности вакуумноплотной перегородки. Это уникальное свойство пиронитрида бора объясняется не столько малой величиной его коэффициента

линейного расширения, сколько крайне малым значением модуля упругости – как выяснилось, чрезвычайно важной характеристикой материалов, используемых в окнах мощных СВЧ приборов.

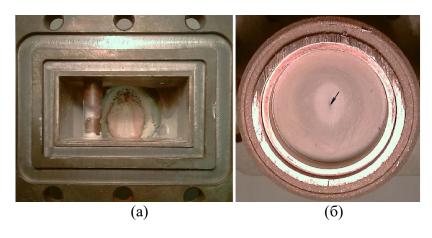


Рис. 1. Диск из борнилита, разрушенный дуговым разрядом с внешней стороны (а). (б) — вид диска со стороны прибора. Стрелка указывает на микроотверстие, образовавшееся в центре диска и приведшее к натеканию прибора. С внутренней стороны на поверхность диска напылилась медь. Трещин в диске нет.

При моделировании конструкций окон таким образом, чтобы все их внутренние размеры изменялись обратно пропорционально частоте:

$$S \cdot f^2 = \text{const}, \tag{4}$$

электродинамические характеристики практически не изменяются, а зависимость порога рассмотренных разрушающих явлений от частоты принимает вид:

$$P_{mn}f^{n} = const_{n}, (5)$$

где n=0 для вторично-электронного разряда, n=1 для TMP из-за диэлектрических потерь и n=2 для пробоя в невакуумной части вывода энергии, const_n – постоянная величина для выбранных конструкции волноводного окна и материала диэлектрической перегородки. На рис. 2 представлены зависимости пороговых мощностей разрушающих явлений в т.н. «двойном» окне вывода энергии при изменении размеров с частотой в соответствии с формулой (4).

На основании представленных зависимостей и приведенных выше данных можно прийти к следующим выводам:

- в приборах с высокой средней или непрерывной мощностью термомеханическое разрушение наиболее вероятно для материалов с низкими значениями коэффициента качества (керамика 22XC) и практически невозможно для пиронитрида бора (условная граница ТМР для борнилита на графике соответствует порогу начала каления и окисления материала, наблюдаемого в сверхмощных МЦР-приборах миллиметрового диапазона). Однако керамика 22XC может с успехом применяться для передачи высоких уровней мощности в метровом и дециметровом диапазонах длин волн;
- в приборах импульсного режима с высокой средней мощностью в метровом и дециметровом диапазонах длин волн основную опасность для плоских окон вывода энергии на основе оксидов алюминия и бериллия представляет вторично-электронный СВЧ-разряд. Для предотвращения ВЭР используют антидинатронные покрытия. Следует также обратить внимание на нитрид алюминия, имеющий самый низкий коэффициент вторичной эмиссии. В этих диапазонах он может с успехом заменить керамику 22XC, выгодно отличаясь от нее и более высоким коэффициентом качества;
- в сантиметровом и миллиметровом диапазонах длин волн основной причиной разрушения высококачественных диэлектрических материалов является пробой вдоль поверхности перегородки, причем <u>CVD-алмаз не имеет в этом отношении каких-либо преимуществ по сравнению с другими материалами</u>. Отсюда следует, что использование CVD-алмаза в одномодовых, а также в баночных окнах мощных ЭВП <u>не имеет смысла.</u> Благодаря крайне низкому значению модуля упругости наибольшей устойчивостью к СВЧ пробоям обладает пиронитрид бора, который не трескается и может быть разрушен только вследствие расплавления при пробоях с внешней (невакуумной) стороны диэлектрической перегородки

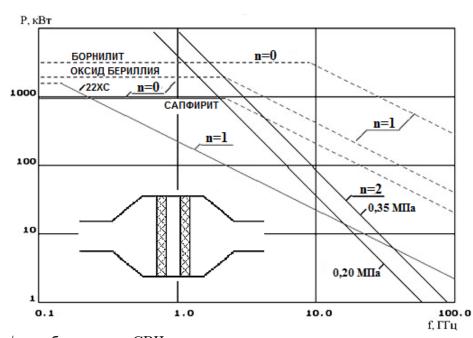


Рис. 2. Зависимости пороговых уровней мощности разрушающих явлений от частоты для самосогласованного («двойного») окна. Границы пробоя, а также граница ТМР (для керамики 22XC) проведены на основании экспериментальных данных, полученных в работе [4].

и/или образовании СВЧ-дуги;

- как следует из сравнения формул (1), (2), (3), увеличение площади S диэлектрической перегородки в сверхразмерных окнах сверхмощных МЦР-приборов миллиметрового диапазона дли волн, способно предотвратить саму возможность появления пробоев и вторично-электронного разряда. В этих обстоятельствах рекордная величина коэффициента

качества этого материала, обусловленная исключительно высокой теплопроводностью и низким тангенсом угла потерь, играет решающую роль в повышении пропускной способности, связанной с термомеханическим разрушением, и позволяет считать CVD-алмаз оптимальным для применения именно в таких приборах;

- по сочетанию свойств лучшим материалом для применения в одномодовых и баночных выводах энергии мощных ЭВП СВЧ коротковолновой части дециметрового, а также сантиметрового и миллиметрового диапазонов длин волн является пиролитический нитрид бора — материал, наиболее устойчивый ко всем основным видам разрушений, с которыми приходится сталкиваться в процессе разработки волноводных окон.

Библиографический список

- 1. Matsumoto H. Development of a High-Power RF-Window in S-Band/ H Matsumoto// International Accelerator School in Japan. 1996. P. 1-22.
- 2. Prokofiev B.V. Pillbox-Type Windows Transmitting Power in the TM_{01} -Mode of the Circular Waveguide / B.V. Prokofiev // Third Int. Vacuum Electronics Conf. IVEC2002. Monterey, CA, USA. April 23-25, 2002. P. 224.225.
- 3. Прокофьев Б.В. Численное моделирование тангенциального вторично-электронного СВЧ разряда / Б.В. Прокофьев // Электронная техника. Сер.1. Электроника СВЧ. 1980. Вып.11(323). С. 29-34.
- 4. Приезжев Г.М. Испытания выводов энергии самосогласованного типа в кольцевом резонаторе с бегущей волной/ Г.М. Приезжев, В.П. Сазонов//Электронная техника. Сер.1. Электроника. Вып. 12. 1967. С. 43-52.